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Abstract. In many countries census data are only reported for areal units and not at the individual 
level. This custom raises the spectre of ecological fallacy problems. In this paper, a 10% sample 
census (from the United Kingdom) and individual census data (from Italy) are used to provide 
an empirical demonstration of the nature and magnitude of these problems. It is concluded that 
ecological fallacy effects are endemic to areal census data, although their magnitude is perhaps not 
as large as might have been expected. The principal difficulty is that there is at present no way of 
predicting in advance the degree of severity likely to be associated with particular variables and 
particular techniques. Finally, a suggestion is made concerning how the potentially serious practical 
consequences can be reduced. 

1 Introduction 
In the United Kingdom, census data which describe the characteristics of individual 
persons and households are only available in an aggregate form for what are essentially 
arbitrary geographical areas. The areal units used to report census data (enumeration 
districts, census tracts, wards, local government units) have no natural or meaningful 
geographical identity. Census agencies have been seemingly very slow to realise, and 
geographers have often failed to point out, that census statistics can be biased as 
much by the geographical boundaries that are used to report them as by questionnaire 
design and the code books used to categorise the responses. These latter aspects are 
routinely investigated by the census agencies responsible for the collection of census 
data, but the former problem is ignored. Yet this problem is particularly important to 
many users of census data, who often, directly or indirectly, make inferences about the 
characteristics of individual households and the associations between them on the basis 
of crosstabulated frequency counts as reported for various sets of arbitrary areal units. 

Census geography is therefore a subject of considerable practical relevance to many 
users of census data, although it has attracted little academic interest. Important 
geographical issues, such as the purposeful definition of meaningful areal units for 
reporting census data and the magnitude of aggregation^ biases and ecological 
fallacies that characterise particular sets of areal definitions, have not been thoroughly 
investigated or indeed subjected to much study. With the absence of relevant 
research it has been far too easy for census planners to use whatever areal units are 
most convenient to them without any concern for the underlying spatial aggregation 
problems. 

This neglect is surprising because many of the basic problems associated with the 
analysis of aggregated census data have been recognised for a long time (Gehlke and 
Biehl, 1934; Robinson, 1950; Blalock, 1964; Hannan, 1971; Clark and Avery, 
1976; Openshaw, 1977). Gehlke and Biehl (1934, page 170) have asked "Whether a 
correlation coefficient in census tract data has any value for causal analysis. Does it 
measure the inter-relation of traits in their ultimate possessors—individuals and 
families? A relatively high correlation might conceivably occur by census tracts when 
the traits so studied were completely dissociated in the individuals or families of 
those traits." Robinson (1950) provides empirical evidence that this extreme result 
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can in fact occur. Indeed, it is now known that the modifiable nature of areal 
units can be systematically exploited by heuristic procedures to produce a very wide 
range of different results, irrespective of what individual-level analysis would have 
produced (Openshaw, 1978a; 1978b; 1981; Openshaw and Taylor, 1979; 1981). 
These extreme results demonstrate the approximate range of aggregational variability 
inherent in areal data, but they may not be typical of the range of results likely to 
be produced for the restricted sets of areal units commonly used to report census data. 

The significance attached to these various problems depends on the purpose behind 
the study. Is it to examine the characteristics of areas or is it to infer something 
about the characteristics of the individuals who live there? If statistical techniques 
are being used, the analyst should decide whether the underlying models of interest 
relate to the individual level or to an aggregate zonal level. If it is the former, there 
is no theoretical guarantee that it is possible to obtain 'good' parameter estimates for 
a model specified at the individual level using data from a higher level of aggregation. 
Very little is known about the loss of efficiency that may ensue. If the interest is in 
areal models, there are problems resulting from the modifiable nature of the areal 
units; that is, any statistical relationship may be manipulated, either intentionally or 
otherwise, by the choice of areal units. This also affects crossaggregation estimation. 
One problem is that many users of census data do not have a clear idea of what it is 
that they are studying and tend to mix both approaches. Another is that the 
aggregational properties of the various census areas are unknown and, moreover, may 
be variable specific and spatially invariant. Furthermore, these areal units, though 
neither neutral nor meaningful entities, are exogenous to all subsequent uses of the 
data. 

These problems are potentially very serious and they directly affect the usefulness 
of census data. In theory they are easy problems to study since all that is required 
is access to spatially referenced individual data and a fast computer. However, in 
practice there are numerous problems of both a technical and a political nature. For 
instance, in the United Kingdom the 1922 Census Act prohibits the release of census 
data about identifiable individuals. This Act has been interpreted by civil service 
administrators as precluding the release of any individual data, even for anonymous 
individuals(1). Ideally, these studies could be done by the Office of Population Censuses 
and Surveys (OPCS) without any breach of confidentiality, but the necessary resources 
have not yet been made available. Only after 100 years have elapsed can individual 
census data be studied outside of the OPCS, but the available nineteenth-century data 
are not particularly useful for studying problems associated with the 1981 census. Like­
wise, a small sample of microdata, along the lines of the US Bureau of the Census 
Public Use Sample, is of very limited value for aggregation research. 

As a result there is often no readily available means whereby users of census data 
can determine whether the results, hypotheses, and conclusions obtained from the 
analysis of areal census data are applicable at the individual level or whether they are 
a characteristic of the areal units being studied. This is an important problem 
because individual-level inferences tend to be implicit in many applied uses of census 
data; for example, the identification of problem areas for planning purposes, the use 
of a spatial classification to identify particular client groups in marketing, and the 
use of areal data by sociologists to generate hypotheses at the individual level. Many 
of these inferences occur in descriptive studies, in which it is very easy to confuse the 
characteristics of areas with the characteristics of people who live there. 

W A strange but limited exception is the longitudinal sample of individuals being studied at a gross 
spatial scale (Goldblatt and Fox, 1978). There are also rumours about the release of individual 
data from the 1971 census for Northern Ireland. 
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In this paper, an attempt is made to illustrate some of these problems through a 
series of empirical experiments based on two large individual data sets. Probably the 
best available and most relevant UK data are a 10% random sample survey of all 
households in Sunderland. This was undertaken by Tyne and Wear County Council 
as a substitute for the 1976 census. A subset of these data was made available under 
various confidentiality restrictions. These data could be aggregated into polling 
districts, 1 km grid-squares, and 500 m grid-squares. The second data set is a 100% 
census survey of all households in Florence, Italy for 1971. It consists of 122342 
household records which could be aggregated into 484 enumeration districts. These 
data were collected for the Regional Government of Tuscany at the same time as the 
official Italian census organised by the Italian Government's census and statistical 
agency, ISTAT. Whereas the data used here are not the same as the official census 
data, they are probably as good and the range of variables is larger. 

The Italian data are far more comprehensive than the Sunderland data, although 
fewer small-area aggregations could be examined. My object in studying them both 
is to allow differences due to the peculiar nature of Italian census data to be 
identified. It is hoped that the various analyses performed on the Sunderland and 
Florence data sets will help provide some indication of the scale of any ecological 
fallacy problems that may be present and suggest conclusions relevant to the analysis 
of 1981 census data both in Italy and in the UK. 

In section 2 of the paper, the Robinson (1950) correlation analyses are replicated 
for a wide range of variables and for smaller areal units than studied by him. In 
section 3, the effects of ecological fallacies on factorial studies based on individual 
and ecological correlation coefficients are examined. The effects on some simple 
regression models are considered in section 4, and in section 5 individual and spatial 
classifications of the same data are compared. Finally, in section 6, some conclusions 
drawn from the empirical studies are presented. 

2 Correlation analysis 
2.1 Individual versus ecological correlations 
In a now famous paper, Robinson (1950) demonstrated that individual relationships 
cannot be inferred from ecological correlations based on areal data. He wrote: 
"there need be no correspondence between the individual correlation and the 
ecological correlation" (page 354). An individual correlation is one based on variables 
which measure the properties of indivisible objects, such as persons or households, 
whereas in an ecological correlation the object being studied is a group of persons 
living in a census enumeration district or some other areal unit and the variables are 
descriptive properties of areas rather than of individuals. Alker (1969) identified a 
number of different types of ecological fallacy that can arise from the analysis of 
aggregate data. 

In general there is a notable absence of empirical study vis-a-vis theoretical 
speculation. Robinson (1950) may well have identified extreme rather than typical 
ecological-individual differences. His conclusions were, after all, based on the 
comparison of two correlation coefficients computed at the individual level and for 
the USA divided into eight census areas and by States, both of which are gross levels 
of spatial aggregation. The question arises as to what might be the typical levels of 
differences for a larger number of variables for those levels of aggregation most 
commonly used in census studies. A number of indicator variables could be computed 
both for the Sunderland and for the Italian data sets. A set of fifty-three variables 
is used to describe the 8483 households in the Sunderland data set and a set of forty 
variables is used for the 122342 households in the Florence data set. 
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The simplest demonstration of the differences between ecological and individual 
correlations is to crosstabulate both sets of correlations. Pearsonian correlation 
coefficients are used for both data sets and are comparable statistics. At the 
individual level the correlations are calculated from the dichotomous data; at the 
various areal levels these dichotomous measurements give way to rates per 10000 
after aggregation. The results are shown in table 1. 

The scatter of correlation coefficients gives an immediate impression of the nature 
and magnitude of the problem. The spread of frequencies either side of the diagonal 
cells provides an indication of the differences due to aggregation, although of course 
the results are a function of category size. An examination of the row and column 
frequencies shows how the distribution of the individual correlations is far more 
concentrated than the ecological correlations, suggesting that areal aggregation has a 
pronounced flattening effect. It is also noticeable that, for the range of scales 
examined in table 1, large differences are not very common. 

The results for table 1 are repeated in table 2, but smaller grid-size categories are 
used. The shift away from the no-change or diagonal cells is now very pronounced. 
The rule is simply that areal aggregation tends to make correlations stronger, with 
the largest differences being recorded for those individual correlations close to zero. 
The effects of scale can also be observed. The Sunderland data can be aggregated to 
thirty-six polling districts or disaggregated into 347 grid-squares of 500 m side, 
compared with 117 grid-squares of 1 km side used in tables 1 and 2. Obviously, as 
the zones become smaller and thus more homogeneous, so the differences between the 
ecological and individual correlations decrease. Table 3 provides a crosstabulation 
of the individual and ecological correlations for polling districts and 500 m grid-squares. 
These results suggest that there may well be a critical scale of areal aggregation 
and/or a particular type of spatial aggregation that will best approximate the individual 
correlation values. There could be some benefits to users of census data if it were 

Table 1. 
totals). 

Crosstabulation of individual and ecological correlation coefficients (percentages of row 

Individual 
correlations: 
from/to -1.0/ 

-0.8 

Areal correlations: from/to 

-0.8/ -0.6/ -0.4/ 
-0.6 -0.4 -0.2 

-0.2/ 
0.0 

0.0/ 
0.2 

0.2/ 
0.4 

0.4/ 
0.6 

0.6/ 
0.8 

0.8/ 
1.0 

Total 

Sunderland 1 km grid-squares (53 variables) 
-1.0/-0.8 
-0.8/-0.6 
-0.6/-0.4 
-0.4/-0.2 
-0.2/0.0 

0.0/0.2 
0.2/0.4 
0.4/0.6 
0.6/0.8 

Totals 

100 
50 
12 

6 

50 
44 

9 

32 

32 
36 

4 
1 

117 

12 
34 
32 

2 

387 

Florence enumeration districts (40 variables) 
-1.0/-0.8 
-0.8/-0.6 
-0.6/-0.4 
-0.4/-0.2 
-0.2/0.0 

0.0/0.2 
0.2/0.4 
0.4/0.6 
0.6/0.8 
0.8/1.0 

100 

2 

0 

19 
1 

100 
31 

7 
1 

24 
21 

6 

15 
39 
14 

444 

17 
32 
10 

4 
18 
29 
14 

248 

6 
23 
28 

1 
5 

32 
32 
17 

117 

14 
28 
18 

1 
20 
39 
50 
50 

66 

2 
22 
27 

100 

3 
14 
17 17 
50 

13 1 

3 
55 

100 

1 
4 

25 
180 
997 
188 
28 

6 
2 

1 
0 
2 

83 
603 

78 
11 

1 
1 
0 

Totals 21 72 154 214 167 106 33 10 
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possible to identify as an alternative to the current use of arbitrary areal units, an 
optimal level of spatial resolution which minimised these differences. Although it 
may be difficult to identify optimal sets of areal units suitable for general use, these 

Table 2. A more detailed crosstabulation of individual and ecological correlations (percentages of 
row totals). 

Individual 
correlations: 
from/to 

Areal correlations: from/to 

- 0 . 7 / 
- 0 . 6 

Sunderland 1 km grid-
- 0 . 4 / - 0 . 3 
- 0 . 3 / - 0 . 2 
- 0 . 2 / - 0 . 1 
-0 .1/0 .0 

0.0/0.1 
0.1/0.2 
0.2/0.3 
0.3/0.4 

Totals 

29 
6 
2 

12 

- 0 . 6 / 
- 0 . 5 

•squares 
29 
18 

2 

20 

- 0 . 5 / 
- 0 . 4 

- 0 . 4 / 
- 0 . 3 

(53 variables) 
6 

18 
10 

1 

33 

Florence enumeration districts (40 v 
- 0 . 4 / - 0 . 3 
-0 .3 / -0 .1 
- 0 . 4 / - 0 . 1 
-0 .1/0 .0 

0.0/0.1 
0.1/0.2 
0.2/0.3 
0.3/0.4 

Totals 

11 
6 

6 

28 
8 
2 

15 

50 
6 
9 
8 

2 

29 

29 
29 
22 

6 

84 

variables) 
50 
28 
22 

8 
1 
0 

43 

- 0 . 3 / 
- 0 . 2 

8 
25 
17 

5 
1 
2 

158 

11 
17 
16 

4 
2 

67 

- 0 . 2 / 
- 0 .1 

6 
17 
27 
11 

1 
0 

229 

6 
9 

17 
10 

5 

87 

- 0 . 1 / 
0.0 

14 
10 
25 
20 

6 
2 

260 

6 
14 
19 
13 

7 

108 

0.0/ 
0.1 

5 
11 
23 
11 
6 

184 

6 
14 
17 
7 

106 

0 .1 / 
0.2 

1 
7 

14 
18 
8 

129 

5 
8 

16 
21 

94 

0.2/ 
0.3 

5 
3 

16 
15 
13 
18 

119 

3 
4 

15 
13 
6 

73 

0.3/ 
0.4 

1 
1 
6 

15 
14 
12 

61 

4 
12 
13 
18 
13 

65 

0.4/ 
0.5 

1 
1 
3 

14 
22 
29 

56 

0 
8 

12 
24 
13 

41 

0.5/ 
0.6 

1 
1 

11 
22 
24 

44 

1 
3 
8 

18 
0 

19 

0.6/ 
0.7 

1 
3 

10 
6 

22 

8 
24 
13 

14 

0.7/ 
0.8 

3 
0 

12 

9 

2 
6 

38 

7 

Total 

17 
49 

131 
575 
422 
125 

63 
17 

2 
18 
65 

255 
348 

61 
17 

8 

Table 3. Crosstabulation of individual and ecological correlations using polling districts and 500 m 
grid-squares for Sunderland (percentages of row totals). 

Individual Areal correlations: from/to 

from/to - 1 . 0 / 
- 0 . 8 

Polling districts 
- 1 . 0 / - 0 . 8 100 
- 0 . 8 / - 0 . 6 75 
- 0 . 6 / - 0 . 4 32 
- 0 . 4 / - 0 . 2 7 
-0 .2/0 .0 

0.0/0.2 
0.2/0.4 
0.4/0.6 
0.6/0.8 
0.8/1.0 

Totals 26 

500 m grid-squares 
- 1 . 0 / - 0 . 8 100 
- 0 . 8 / - 0 . 6 75 
- 0 . 6 / - 0 . 4 4 
- 0 . 4 / - 0 . 2 
-0 .2/0 .0 

0.0/0.2 
0.2/0.4 
0.4/0.6 
0.6/0.8 
0.8/1.0 

Totals 5 

- 0 . 8 / 
- 0 . 6 

0 
32 
27 

4 

93 

25 
52 

3 

20 

- 0 . 6 / 
- 0 . 4 

25 
20 
31 
14 

208 

40 
37 

1 

86 

- 0 . 4 / 
- 0 . 2 

12 
16 
24 

3 
4 

281 

4 
47 
24 

1 

321 

- 0 . 2 / 
0.0 

4 
14 
25 

9 
4 

295 

12 
57 

7 

607 

0.0/ 
0.2 

4 
16 
19 
7 

209 

1 
17 
43 

248 

0.2/ 
0.4 

0 
11 
26 

7 
17 

157 

2 
39 
46 

102 

0.4/ 
0.6 

1 
3 

28 
32 

0 

96 

9 
50 
67 

36 

0.6/ 
0.8 

2 
14 
46 
67 
50 

61 

1 
4 

33 
100 

6 

0.8/ 
1.0 

1 

17 
50 

0 

5 

0 

0 

Tota 

1 
4 

25 
180 
997 
188 
28 

6 
2 
0 

1 
4 

25 
180 
997 
188 
28 

6 
2 
0 
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difficulties cannot justify the continued use of areal systems which are basically 
haphazard, in that nothing explicit is optimised. 

2.2 Can ecological correlations be corrected for aggregation effects? 
Goodman (1959) describes a correction procedure that he thought could be applied 
to ecological correlations between variables exhibiting a strong linear relationship. 
A related but simpler technique is to regress the ecological and individual correlations 
to obtain a statistical model that may be used to predict individual correlations from 
the values of ecological correlations. When applied to the Sunderland data this 
resulted in an intercept of zero, and slope coefficients of 0.25 for polling districts, 
0.37 for 1 km grid-squares, and 0.52 for 500 m grid-squares. The associated r2 values 
were 0.48, 0.54, and 0.75, respectively. The same technique applied to the Florence 
data also yielded an intercept of zero, but with a slope coefficient of 0.25; the r2 

value was 0.47. The size of the slope coefficients gives an indication of the inflating 
effects of areal aggregation. In general terms the effect of using these models to 
correct the ecological correlations is to increase the diagonal-cell percentages. The 
best results were obtained for the 1 km grid-square data; the other data sets tended 
to be overcorrected, so that the distribution of the estimated individual correlations 
was too peaked. A number of other regression models were investigated which 
sought relationships between various moments of the data distributions and the 
change in correlation brought about by aggregation, but no better models were found. 

A problem with these regression model approaches is that the predicted correlations 
are not constrained to lie between -1 and 4-1, the bounds of a correlation coefficient. 
A number of nonlinear logit, arctangent, and S-shaped functions were investigated 
which asymptoted to the desired limits, but again no better models could be devised. 
The basic problem is that there is a degree of random scatter that cannot be 
accounted for. It is apparent that there are a number of different factors which act 
as mechanisms for the aggregation effect. For example, individual variables with 
small total frequencies can exhibit the largest range of aggregation effects when 
aggregated and correlated with variables which have large total frequencies, but this 
phenomenon is nonlinear and complex. 

It seems then that there will be no simple solution to this problem. As Langbein 
and Lichtman (1978, page 61) put it: "Investigators will find no philosopher's stone 
for transmuting information about groups into conclusions about individuals", 
although for certain purposes special techniques may help a little (Duncan and Davis, 
1953; Johnston, 1976). Instead it would seem more sensible to advocate the use of 
spatial engineering techniques to create sets of areal units with specific properties, be 
they of a statistical or numerical nature or expressed in terms of qualitative 
geographical sensibility criteria. 

3 Factorial studies 
3.1 Individual versus ecological factorial studies 
A very common analytical technique applied to census data is that of social-area 
analysis, usually in the form of factor analysis (Clark and Gleave, 1973). Ecological 
fallacies are perhaps most visible with these methods, since the interpretation of the 
factors is often in terms of characteristics assumed to exist at the individual level. It 
is interesting, therefore, to investigate whether the differences between ecological and 
individual correlations shown in tables 1 to 3 produce different factor interpretations 
and whether multivariate rather than bivariate analysis is better able to identify the 
magnitude of the problem. If the inflating effect of spatial aggregation on the 
correlation coefficient is largely systematic, then perhaps there may be little or no 
major differences in interpretation. Alternatively, if the effects are variable specific 
and highly complex, different results could well emerge. 
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The sizes of the eigenvalues extracted from the correlation matrices for the 
various individual and areal data sets provide a measure of the inflating effects of 
spatial aggregation. For the individual Sunderland data, eighteen eigenvalues exceeded 
unity and accounted for 62.5% of the variance in the original correlation^ matrix. After 
aggregation to 500 m grid-squares, these values changed to fifteen eigenvalues and 73.4%, 
for the 1 km grid-squares to fourteen eigenvalues and 82.5%, and for the polling districts 
to eight eigenvalues and 85.0%. For the individual Italian data, fourteen eigenvalues 
exceeded unity and accounted for 57.8% of the variance. After aggregation to 
enumeration districts, eight eigenvalues accounted for 73.7% of the variance. It is 
apparent that the smaller number of factors for the areal data sets is the result of 

Table 4. Congruence coefficients between individual factors and the most similar areal factor. 

Individual factor Factor numbers ranked by size of eigenvalue 
number 

Florence Sunderland 
enumeration 
districts3 500 m grid- 1 km grid- polling 

squares3 squares3 districts3 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 (0.69) 
6 (0.82) 
1 (0.45) 
4 (0.80) 
1 (0.72) 
2 (0.34) 
2 (0.35) 
5 (0.79) 
1 (0.38) 
5 (0.47) 
2 (0.79) 
6 (0.35) 
8 (0.77) 
3 (0.66) 
- -
- -
- -
- -

1 (0.90) 
4 (0.75) 
3 (0.84) 
5 (0.96) 
2 (0.86) 
9 (0.93) 
7(0.61) 
8 (0.68) 
4 (0.70) 
6 (0.74) 

10 (0.85) 
7 (0.57) 

15 (0.53) 
15 (0.56) 
13 (0.26) 
5 (0.49) 
8 (0.49) 

13 (0.56) 

2 (0.77) 
14 (0.67) 
4 (0.72) 
6 (0.87) 
3 (0.81) 

10 (0.79) 
1 (0.58) 
5 (0.47) 
7 (0.68) 
5 (0.62) 
2 (0.67) 
1 (0.54) 
2 (0.42) 
5 (0.35) 
8 (0.56) 
6 (0.36) 
9 (0.82) 

12(0.31) 

2(0.56) 
1 (0.75) 
2 (0.53) 
3 (0.80) 
1 (0.55) 
3 (0.29) 
1 (0.58) 
5 (0.56) 
1 (0.68) 
4 (0.74) 
2 (0.32) 
7 (0.25) 
6 (0.65) 
5(0.31) 
8(0.31) 
3(0.51) 
5(0.51) 
5(0.21) 

Figures in brackets are congruence coefficients. 

Table 5. Size distribution of congruence coefficients between the individual and areal factors. 

Coefficient Congruence coefficients 
size 

Florence Sunderland 
enumeration 

Over 0.9 
0.8-0.9 
0.7-0.8 
0.6-0.7 
0.5-0.6 
Under 0.5 

districts3 

0(0) 
2(2) 
4(4) 
2(2) 
0(0) 

104 (6) 

500 m grid-
squares3 

3(3) 
3(3) 
3(3) 
5(2) 
8(4) 

248 (3) 

1 km grid-
squares2 

0(0) 
3(3) 
3(3) 

10(4) 
3(3) 

233 (5) 

polling 
districts 

0(0) 

KD 
2(2) 
2(2) 
7(7) 

132 (6) 

Figures in brackets are best values for each individual factor. 
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variables, which were either not associated or were not strongly associated at the 
individual level, becoming areally associated with increasing scales of aggregation. 
It is of interest, therefore, to investigate what happens to the factor loadings. 

For present purposes it is sufficient to use factor loadings obtained by applying a 
VARIMAX rotation with iterative estimates of communalities. The number of 
factors is determined by applying the eigenvalue-of-one rule of thumb. The simplest 
way of comparing the patterns of individual and areal factor loadings is by 
computing congruence coefficients (Harman, 1966) for all pairwise combinations of 
factors. Congruence coefficients can be interpreted as analogous to correlation 
coefficients. High values (over 0.7) are indicative of a high degree of similarity 
between factors; lower values (0.5-0.7) a poor fit; and less than 0.5, no fit [after 
Johnston (1973)]. 

In table 4, the best-match areal factors for each individual factor are reported. 
These results indicate that there is a small number of good fits and a large proportion 
of poor or no fits. The size distribution of the full set of congruence coefficients is 
given in table 5. If an arbitrary threshold of 0.7 and over is used to indicate a 'close 
fit', then the best match is for the Sunderland 500 m grid-square data with nine 
factors; next are the Florence enumeration districts and the Sunderland 1 km grid-
square data with six factors, followed by the Sunderland polling districts with three 
factors. 

A few individual factors have a weak association with two or more areal factors. 
For example, factor 1 for the Florence enumeration districts has some similarity with 
individual factors 1 and 5, and factor 1 for the polling districts has some similarities 
with individual factors 2, 5, 7, and 9. This is to be expected, as spatial aggregation 
brings together unrelated sets of variables. It may be that different factor rotations 
would be more successful at identifying these effects. Generally, however, it seems 
that the principal effect of spatial aggregation of census data is to create new factors 
by bringing together variables that were not strongly associated at the individual level. 
A more insidious effect is to change the strength of the relationships between most 
variables and this influences the nature and the significance attached to most factors. 
In practice not all these effects and differences can be detected; such is the level of 
subjectivity in the art of factor labelling. 

4 Regression models 
4.1 A superficial comparison of some simple individual and ecological models 
The question now arises as to how well regression models can cope with these 
aggregation problems and more especially whether models which have been built as 
descriptions of areal associations have any relevance at the individual level, and vice 
versa. A major problem here concerns the construction of the same model form to 
handle different levels of measurement; the individual data are mainly dichotomous, 
but the areal data have continuous measurement scales. This is a problem because 
regression models that can handle categorical data cannot handle continuous data 
without recoding the data, and the results may well depend on the recodings that 
are used. The possibility that differences in model structure may affect the results 
needs to be kept in mind throughout this section. 

For the purposes of this paper, a small number of the variables used in section 2 
are selected as dependent variables which a subset of the remaining variables could be 
used to predict. For the areal data, a standard stepwise regression procedure was used 
to identify the 'best' regression models with exactly six variables. These predictor 
variables are then used to build an equivalent regression model with the individual-
level data. The method used for this latter task is known as multiple classification 
analysis (MCA) (see Andrews et al, 1973). MCA offers a form of regression 
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analysis for variables with categorical measurement scales. Finally, to complete 
the crossaggregation comparisons, a method known as SEARCH [alias the 
automatic interaction detector (AID)] was used to identify the best possible 
individual-level models. SEARCH offers an automated method for building models 
of relationships from variables with categorical measurement scales (see Sonquist and 
Morgan, 1964; Sonquist et al, 1974). It can be regarded as being a form of stepwise 
regression that operates on individual-level data, although, of course, it has much 
more to offer. Here it is used merely to identify the first six different variables that 
emerge as being important. The analysis is restricted to only six variables, simply to 
avoid giving the individual-level models an unfair advantage; they can readily handle 
far larger numbers of predictor variables than stepwise regression because they do not 
suffer from multicollinearity problems. These best six variables from SEARCH are 
then used by MCA to provide a regression model in a form that can be compared 
with the areal data results. Both MCA and SEARCH are available in the OSIRIS IV 
statistical package. 

4.2 Comparison of models' goodness-of-fit 
Initially attention is restricted to considering the relative performances of the various 
models. How well do the variables selected by stepwise regression as being important 
for the aggregated data perform at the individual level? This latter result can be 

Table 6. Comparison of model performances. 

Dependent 
variable 

Sunderland data 
Presence or absence 

of colour TV 

Moved in during 
last five years 

Rooms per person 

Florence data 
Agricultural workers 

Retired persons 

Overcrowded 
households 

Model3 

SR 
MCA 
SEARCH 
MR 
SR 
MCA 
SEARCH 
MR 
SR 
MCA 
SEARCH 
MR 

SR 
MCA 
SEARCH 
MR 
SR 
MCA 
SEARCH 
MR 
SR 
MCA 
SEARCH 
MR 

Adjusted r2 

individual 
data 

-
-
0.23 (0.20) 
-
-
-
0.20(0.15) 
-
-
-
0.24(0.21) 
-

0.18(0.03) 

0.46 (0.42) 

-

0.39 (0.32) 

values b 

500 m grid-
squares 

0.57 
0.17 
-
0.47 
0.30 
0.15 
-
0.23 
0.43 
0.21 
-
0.32 

1 km grid-
squares 

0.69 
0.13 
-
0.33 
0.46 
0.06 
-
0.14 
0.56 
0.18 
-
0.30 

polling 
districts 

0.74 
0.15 
-
0.55 
0.86 
0.14 
-
0.82 
0.80 
0.20 
-
0.75 

enumeration 
districts 

0.58 
0.03 

0.41 
0.78 
0.40 

0.76 
0.82 
0.23 

0.80 

a SR represents stepwise regression; MR represents multiple regression. 
b Figures in brackets are r2 values for SEARCH runs stopped after six variables had been selected. 
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compared with the best result achieved by SEARCH-MCA using only the individual-
level data. The question then is how well would a multiple regression model perform 
if these same variables were used with the areal data. These latter results can then 
be compared with the initial stepwise regression runs. Thus three different comparisons 
can be made in an attempt to find out whether different variables are important at 
different levels of spatial aggregation. 

In table 6, the results of these comparisons for a selection of dependent variables 
are reported. The stepwise regression results for Sunderland show, once again, the 
expected scale effects, in that the value of the r2 coefficient increases with the size of 
zone (Blalock, 1964). Likewise, the performances of all the individual-level models 
are far poorer than those for the areal models. There is nothing really surprising 
about this, since it is a feature of all disaggregate models that disaggregation increases 
the level of random variation that cannot be accounted for by the models. 

What is particularly interesting here is that the performances of the MCA models 
using variables identified by the stepwise regression procedure with the areal data are 
often comparable with the performances of the best SEARCH models(2). Likewise, 
the first six variables identified by the SEARCH procedure generally perform well in 
multiple regressions with the areal data. There are some exceptions, but the results 
in table 6 do seem to suggest that the same variables can be used at both scales of 
analysis and that the loss of efficiency, as measured in terms of r2 values, is small 
when committing both ecological and individualistic fallacies. These conclusions 
apply both to the Sunderland and to the Florence data sets. 

4.3 Comparison of the predictor variables selected at different levels of aggregation 
Further support for this view comes from a comparison of the variables selected as 
being the best predictors both at the individual.and in the areal scales (see table 7). 
There is a remarkable degree of correspondence, bearing in mind the very different 
nature of the stepwise regression and the SEARCH procedures used to define the 
best predictor variables. This, of course, does not mean that parameter estimates 
made at the areal level can be applied at the individual level or that different areal 
aggregations will provide similar results; both these topics require further investigation. 
Nevertheless, these tentative findings are interesting in that it would appear that the 
worst-case ecological fallacy situation may not occur. Alternatively, it may be that, 

Table 7. Common predictor variables (out of six) identified by the SEARCH procedure and by 
the stepwise regression. 

Areal units 

Dependent 500 m grid- 1 km grid- polling enumeration 
variable squares squares districts districts 

Sunderland data 
Presence or absence of 3 3 3 

colour TV 
Moved in during last five 5 4 3 
years 

Persons per room 4 4 4 -

Florence data 
Agricultural workers 3 
Retired persons 4 
Overcrowded households 2 

^ ' The SEARCH models also take into account interaction effects which have no equivalent in 
stepwise regression procedures. These effects are included in the r2 values of the SEARCH model 
but not in the related MCA results. 
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in the small number of examples considered here, the important variables dominate 
both scales of aggregation. Further empirical investigation with a wider range of data 
sets is clearly required before any firm conclusions can be reached. 

5 Classification methods 
5.1 Individual versus areal data classifications 
A final technique is that of cluster analysis. This method has been, and is being, 
widely used to provide census data classifications for policy purposes; for example, 
the identification of deprivation areas as a starting point for area-based policies aimed 
at ameliorating the effects of multiple deprivation. The stereotyped image of 
unemployment, poor housing, a lack of basic amenities, and low socioeconomic status 
is one result of these studies. It is not denied that areas with these and related 
deprivation characteristics exist, but doubts are expressed whether area-based profiles 
adequately describe the characteristics of the people who live there. Is a person 
deprived merely because he lives in the same enumeration district as a deprived 
person? Does multiple deprivation exist at the individual or the areal level? The 
problem here is that aggregate census data cannot distinguish between deprived areas 
and deprived people (Openshaw and Cullingford, 1979). The more general question, 
therefore, is how good is a classification of areas as a description of the people who 
live there? 

One way of answering this question is to compare two classifications of the same 
data, one at the individual level and the other at the areal level. This task is made 
difficult by the computational problems involved in the classification of large individual 
data sets; for example, there are 122342 households in Florence to be classified. 
Openshaw (1980; 1982a) described classification algorithms and a suite of computer 
programs which can classify data sets of virtually any size, provided they have 
dichotomous measurement scales. The areal data sets are more easily classified using 
standard clustering techniques; for example, that developed by Openshaw (1982b) 
to classify 1981 census data. 

For this paper; only the Florence data are classified. It was thought better to 
employ a population data set to avoid possible sampling problems associated with 
the Sunderland data. Details of both the areal and individual classifications are 
described in Bianchi et al (1980; 1983). Here attention is restricted to the results 
of a crosstabulation of the households in Florence by cluster both in the individual 
and in the enumeration district classifications. In table 8, the results are presented for 

Table 8. Crosstabulation of households by clusters in the individual and the enumeration district 
classifications. 

Enumeration district Percentage of households in individual-data cluster-codes: 
cluster-codes 

1 

5 
4 
12 
5 
10 
19 
3 
15 
14 
10 
6 

2 

8 
19 
17 
11 
13 
9 
9 
11 
10 
11 
17 

3 

8 
17 
24 
13 
16 
8 
10 
14 
10 
9 
24 

4 

9 
17 
11 
14 
11 
12 
15 
6 
9 
17 
15 

5 

29 
9 
7 
17 
11 
14 
18 
10 
13 
14 
8 

6 

7 
21 
10 
13 
12 
12 
16 
10 
11 
16 
13 

7 

15 
5 
12 
11 
14 
7 
11 
18 
11 
7 
10 

8 

19 
9 
6 
16 
13 
20 
16 
17 
21 
16 
6 
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a comparison of an eleven-cluster enumeration district classification and an eight-
cluster individual-data classification. 

These crosstabulations show that there is very little correspondence between the 
two classifications, yet both have been found to be meaningful in terms of a number of 
criteria (see Bianchi et al, 1983). The individual classification successfully identifies 
the major groupings that were expected to occur, given current knowledge about 
Italian social structure, and the enumeration district classification provides a generally 
accepted description of the spatial structure of Florence. That such large differences 
exist between the two classifications is not too surprising, since the objects being 
classified (households and arbitrary areal units) are different. In other words, unless 
the areas are completely homogeneous, the results will be different. Nevertheless, the 
scale of the observed differences is large, bearing in mind that enumeration districts 
are the finest areal units that are usually available for census analysis. It is apparent, 
therefore, that classification methods present the greatest opportunities for constructing 
ecological fallacies by inference. 

Table 9. Percentage of households in enumeration districts belonging to a particular areal cluster 
by membership of each individual-data cluster. 

Enumeration district Percentage of households in individual-data cluster-codes: 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

2 
7 
7 
4 
4 
3 
0 
1 
4 
2 
2 
0 

15 
6 

15 
9 
8 
6 

13 
10 
10 
7 
9 
6 

21 
12 
0 

11 
10 
8 
3 
7 

13 
8 
7 

13 

12 
8 

15 
20 
14 

8 
18 
15 
22 
21 
10 
18 

12 
16 
34 

8 
15 
30 
18 
20 
15 
15 
23 
14 

19 
13 
19 
17 
19 
15 
24 
12 
13 
16 
12 
14 

8 
18 
7 

11 
9 

11 
8 

10 
8 

10 
6 

17 

7 
18 
0 

15 
16 
16 
12 
22 
11 
18 
27 
13 

Table 10. Performance of SEARCH models trying to predict cluster-codes from the individual data. 

Classification and cluster Sum of squares Classification and cluster 
explained 

Performance8 

Individual-data classification 
Cluster 1 
Cluster 2 
Cluster 3 
Cluster 4 
Cluster 5 
Cluster 6 
Ouster 7 
Cluster 8 

86.7 
69.6 
74.8 
80.2 
77.0 
70.5 
90.2 
74.9 
90.5 

Enumeration district classification 
Cluster 1 
Cluster 2 
Cluster 3 
Cluster 4 
Cluster 5 
Cluster 6 
Ouster 7 
Cluster 8 
Cluster 9 
Cluster 10 
Cluster 11 

Enumeration district 
classification with thirty 
clusters 

0.9 
0.0* 
0.8 
0.9 
1.1 
0.0* 
0.0* 
2.5 
6.2 
1.1 
1.8 
4.3 

1.9 

* No split of the data explained 0.8 or more of the total sum-of-squares of the dependent variable. 
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A further illustration of the differences is provided by examining a highly distinctive 
cluster of enumeration districts which describes the characteristics of agricultural 
areas. The households in the enumeration districts assigned to this cluster are cross-
tabulated by their membership of the individual clusters in table 9. Clusters 5 and 
8 in the individual classification have the highest spatial concentration of agricultural 
workers, but there is still a widespread membership of other individual clusters. 

A final demonstration of the differences is provided by the results of a series of 
attempts, using SEARCH, to find a relationship between the cluster-codes and the 
individual data. In these models the dependent variable has a categorical measurement 
scale in the range 1 to 8 for the individual-data classification cluster-code and in the 
range 1 to 11 for the enumeration district cluster-code. All households assigned to 
the same enumeration district cluster share the same cluster-code. The aim is to 
predict membership of each cluster-code by using SEARCH to identify relationships 
between these cluster-codes and the individual-data variables. As shown in table 10, 
these SEARCH models are able to account for a large part of the sum-of-squares of the 
cluster-codes of the individual classification but very little of the cluster-codes of 
the enumeration district classification. The use of thirty instead of eleven clusters 
results in only a minute improvement in predictive performance. These findings 
emphasise, once again, the dangers of using area-based classifications as a description 
of individual households. 

5.2 An explanation and a suggestion for a new census statistic 
These cluster analysis results are most useful because they are more easily understood 
than either correlation, factor analytical, or regression methods. What appears to be 
happening is that the area classification gives most emphasis to average areal 
characteristics. The households that contribute most to these areal profiles usually 
belong to two or more individual clusters. Aggregation combines and mixes a number 
of different frequency distributions of attributes from the individual data. On 
occasions the households that contribute most to the areal profile may constitute a 
minority; for example, if there is a spatial concentration of households with very 
distinctive characteristics. The extent to which these processes occur depends on the 
relationship between census-area boundaries and the spatial distribution of households 
belonging to individual clusters. 

In addition to the averaging effects of spatial aggregation creating unnatural variable 
associations, the noise- and data-reducing properties of classification methods (in 
common with other statistical techniques) provide a selective amplification or filtering 
of the averaged-out data. Cluster analysis will emphasise areas with distinctive 
characteristics, even if the percentage occurrences of a variable at the individual level 
is low. Likewise, it will give little or no emphasis to variables which have similar 
levels in most areas. For example, the agricultural-area cluster is spatially highly 
distinctive, even though it provides a poor representation of the individual households 
who live in such areas. Similarly, some individual clusters never appear in the area 
classification because the spatial distribution of their constituent households is not 
geographically concentrated. For example, there are two old-person clusters in the 
individual-level classification, but none in the area classification. This is not 
surprising when the range of percentage old-persons is from 30% to 49%, but in the 
two individual clusters, 89% and 90%. The primary distinction between the two 
classifications, then, is that the area classification emphasises geographical concentrations 
whereas the individual one is completely aspatial. 

If both levels of classification are available, they can be used in a complementary 
manner. However, there is a strong case to be made for using the individual 
classification to report for each enumeration district the numbers of households in 
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each individual cluster. These derived statistics would offer an easy substitute for 
microcensus data since they summarise a large number of individual attributes. More 
importantly, they would give an indication of the spread of socioeconomic and 
demographic characteristics within an enumeration district. This would allow any 
aggregational basis in the areal data to be identified and the dangers of ecological 
fallacies would then be reduced. For example, it would be possible to count the 
numbers of 'deprived' households living in a 'deprived' area by reference to the number 
of households in certain clusters in the individual classification. Furthermore, 
because the individual-level classifications are aspatial, and thus independent of 
census geography, they would offer a new dimension to census analysis. These new 
statistics could be mapped, and it is perhaps not unlikely that they could result in a 
better understanding of the characteristics of urban and rural areas. 

6 Conclusions 
In this paper, the results are described of a series of empirical studies designed to 
demonstrate the magnitude and nature of ecological fallacy problems associated with 
the analysis of aggregate census data. The methods examined here are fairly simple-
minded and are typical of the types of analyses often performed on census data. 
The results confirm that the ecological fallacy problem is important, but its severity 
depends on the methods of analysis employed, on the mode of interpretation afforded 
to the results, and even on the choice of variables. The problem is that at present 
there is no way of being able to predict or determine whether a particular areal data 
set is going to yield results which are close to the individual values. For example, a 
correlation coefficient which is at the extremes of tables 1 or 2 would produce very 
misleading results, and, because only aggregate data are available from the census in 
many countries, there is no way of knowing how large this effect might be. 

One solution would be for a new set of derived census variables to be added to 
areal data sets. These new variables would give an indication of the distribution of 
household types within an area according to an individual-level cluster analysis. 
Obviously this would not solve all problems, but it would be a useful addition to 
existing census variables. 

Finally, two further areas of research are suggested. The first is to examine more 
closely the effects of data aggregation on the accuracy of parameter estimates. This 
implies that models can be built at the individual level with parameters that can be 
estimated from areal data. If possible, this would provide the basis for a statistical 
solution to the areal aggregation problem. The second area of research involves the 
further testing of a wider range of methods both on individual and on areal data sets. 
The purpose would be to provide further empirical evidence about aggregation effects 
so as to persuade census agencies to take a greater interest in these problems, 
particularly the need for the most careful design of spatial frameworks for the 
presentation of aggregate census data. 
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